Annexure II: MSc Programme in mathematics at RAMAKRISHNA MISSION VIVEKANANDA Educational and Research Institute for the academic years 2018 - 19 onwards

Semester 1:
- Course No 1. Real Analysis 1 (4)
- Course No 2. Algebra 1 (4)
- Course No 3. Elementary Number Theory (4)
- Course No 4. Linear Algebra (4)

Semester 2:
- Course No 5. Complex Analysis (4)
- Course No 6. Algebra 2 (4)
- Course No 7. Elective 1 (4)
- Course No 8. Real Analysis 2 (4)
- Course No 9. Methodology of Mathematics (4)

Semester 3:
- Course No 10. Functional Analysis / Discrete Mathematics (option) (4)
- Course No 11. Topology 1 (4)
- Course No 12. Elective 2 (4)
- Course No 13. Multivariable Calculus and Differential Geometry

Semester 4:
- Course No 14. Linear Algebra 2 (4)
- Course No 15. Topology 2 (4)
- Course No 16. Elective 3 (4)
- Course No 17. Project (6)

Note: Among the three electives in the course, one must be an Interdisciplinary/Applied Math elective.
Coursewise Syllabi

Notes:

1. The following Syllabi form guidelines to be adhered to for at least 70% of the course. As per the existing practice the remaining 30% can be shaped and tailored according to the will and discretion of the instructor to suit his/her individual philosophy of teaching as well the the demands of the students or any other special situation that may arise.

2. Wherever there is an overlap/interconnection between concurrent courses running in the same semester the respective instructors will try to maximize the synergy afforded by such an interconnection by suitably coordinating the lectures.

3. An elective course from the Interdisciplinary/Applied Math stream must be opted and passed by the masters student. The list of possible electives is appended to the following syllabi for courses.

4. In the third semester, the student will have a choice between Functional Analysis and Discrete Mathematics courses. In the case he/she wishes to opt for Discrete Mathematics, it will be counted as a course in the interdisciplinary/Applied Math stream and passing this course will fulfill the requirement of a course from this stream (see point 3 above). However if the student wishes he/she can opt for further courses in this stream via the Elective courses that are offered within the School of Mathematical Sciences every semester from the second semester onwards.

Semester 1

M 201: Algebra 1

Syllabus:

Group Theory
Group action on a Set, Stabilisers and Orbits, Burnside–Frobenius lemma, transitive action, Cayley’s theorem, Class Equation, Automorphisms, Sylow’s Theorems, Direct Products, Symmetric and Alternating groups,

If time permits, Semidirect Products, Groups of Platonic solids. Polya enumeration

Combinatorial Group Theory
Free groups, presentation of groups by generators

If time permits, Todd Coxeter Algorithm, Free products.

Ring Theory
Examples, Ring Homomorphisms, Ideals, Quotient Rings with emphasis on \(\mathbb{Z}/a\mathbb{Z} \) and Modular Arithmetic, Isomorphism Theorems, Properties of Ideals, Prime and Maximal Ideals, Rings of Fractions, Chinese remainder theorem; Euclidean domains, PID, UFD, Factorization in \(\mathbb{Z}[i] \).

Polynomials and Polynomial Rings : Definition and basic properties, universal mapping property, division algorithm; \(R[x] \) is a UFD if \(R \) is a UFD; Irreducibility Criteria; Noetherian condition.
If time permits,

Hilbert basis theorem and applications; Definitions and examples of Algebraic Sets and Coordinate rings. Polynomial Maps.

Suggested Text:

- E. Vinberg - A course in Algebra, Graduate Studies in Mathematics.

Other texts:

- M. Artin - Algebra - PHI
- D.S. Dummit and R.M. Foote - Abstract Algebra J. Wiley
- I. N. Herstein - Topics in Algebra; J. Wiley
- N. Jacobson - Basic Algebra Ch. 1,2. Van Nostrand

M 204: Linear Algebra 1

Syllabus:

Note: 1) It is desirable to hold problem sessions, so that the students gain a firm conceptual grasp as well as the capacity to solve problems. The initial sessions are to review basic topics like elementary matrices and elementary operations, invertible and elementary matrices, matrix concepts like similarity and rank and their relation to linear transformations. 2) For the topic Eigenspaces, it suffices to cover basic concepts necessary for Spectral theory. Minimal and characteristic polynomials, canonical forms will be done in Linear Algebra 2. 3) Geometric significance of concepts to be emphasized wherever necessary, e.g. geometric interpretation of specific linear operators, orthogonal matrices, determinant as volume, etc. Suggested Text:

- K. Hoffman and R. Kunze – Linear Algebra, PHI, Ch. 3 (with revision of 1), 6.1-6.2, 8, 9,10.

Other texts:

- D.S. Dummit and R.M. Foote - Abstract Algebra, John Wiley - Ch. 11
- M. Artin - Algebra, PHI – Ch. 4, 7.
M 209: Elementary Number Theory

Syllabus

Note: Upto to 50% of this course can be modeled based on the choice of the instructor/demands of students so as to lay emphasis on a particular aspect of the subject. For example, the course could be geared towards analytic number theory or combinatorial number theory etc. The following syllabus for a sample.

Divisibility Theory in Integers; Congruences: Euler-Fermat, Wilson’s Theorem, Chinese Remainder Theorem, quadratic reciprocity law; Sum of two squares, Arithmetical functions - average order of some functions; Distribution of Primes: Chebyshev’s bound, elementary proof of prime number theorem.

Additive number theory: Schnirelman’s Theorem, Cauchy-Davenport Theorem, EGZ Theorem, van der Waerden’s Theorem, Diophantine approximation: Liouville’s Theorem.

Suggested books:

- Elementary Number theory by David M. Burton
- An Introduction to the Theory of Numbers by G.H. Hardy, E.M. Wright.
- Additive Number Theory: Inverse Problems and the Geometry of Sumsets by Nathanson, Melvyn B

M 205: Real Analysis 1

Syllabus:

Review of single variable calculus: continuous functions, uniform continuity, sequences and series of functions, uniform convergence, exponential and logarithm functions, Periodic functions and Fourier Series, Trignometric functions, Measure and Lebesgue measure

Suggested Texts:

- W. Rudin - Principles of Mathematical Analysis - Ch 7 Tata McGraw Hill
- T. Tao, Analysis I, Hindustan Book Agency
- T. Tao, Analysis II, Hindustan Book Agency
- T. M. Apostol - Mathematical Analysis - Ch. 12, 13, Narosa
• W. Rudin - Principles of Mathematical Analysis - Ch 9, Tata McGraw Hill

Other texts:
• M. Spivak Calculus on Manifolds, Publish or Perish

Semester 2

M 206: Real Analysis 2
Syllabus:

Suggested Texts:
• E. A. Coddington and N. Levinson - Theory of Ordinary Differential Equations (1.1-1.6), PHI
• D. Gilbarg and N. Trudinger – Elliptic Differential Equations of Second Order, Springer
• L.C. Evans, Partial Differential Equations, GTM v 19. AMS 1998

M 206: Algebra 2 -Fields and Galois Theory
Syllabus:

Finite groups, simple groups, solvable groups, simplicity of \(A_n \).

Field Theory: Algebraic Extensions, Finite and algebraic extensions, Normal extensions, algebraic closure, separable and inseparable extensions, primitive element; Galois theory: Galois extensions and Galois group, Galois’ Theorem, fundamental theorem; Explicit examples and concrete applications of Galois theory, Resolvents; Roots of unity, cyclotomic polynomials and extensions, solvability by radicals, Abel’s theorem, finite fields;

If time permits:
Introduction to Transcendental Extensions: Finite transcendence degree. Integral Extensions; Applications to Ruler and Compass constructions. Lemniscate division.

Note: The topic on finite groups should be done just before the topic Solvability by radicals. Section 4.6 of Jacobson's Basic Algebra 1, or Section 5.7 of Herstein should be used.

Suggested text:
• D.S. Dummit and R.M. Foote - Abstract Algebra, Wiley - Ch. 13, 14, 15.1 – 15.3
• N.S.Gopalakrishnan - University Algebra, Wiley Eastern – Ch. 4
• TIFR pamphlet on Galois theory.
• Other texts:
 • S. Lang – Algebra, Addison Wesley, (Ch. 5, 6.1 – 6.7, 7.1, 8.1, 9.1);
 • I. N. Herstein – Topics in Algebra, John Wiley, Ch. 5.
 • N. Jacobson - Basic Algebra 1, HBA, Ch. 4
 • G. Rotman – Galois Theory, Springer.
• D. Cox - Galois Theory, Wiley.

Elective 1

Please see the list of 2nd/4th semester electives below.

M 203: Complex Analysis

Syllabus:
Analytic Functions: Power series, Trigonometric functions, Cauchy - Riemann equations, analytic functions as mappings; Complex integration: Cauchy’s theorem and integral formula, power series representation, zeros of an analytic function, Meromorphic functions and residue calculus, Index of a closed curve, Morera’s theorem, Liouville’s theorem, open mapping theorem; Singularities: Classification, Rouche’s theorem, argument principle; Maximum modulus principle, Schwarz lemma, analytic continuation; Compactness and convergence in the space of analytic functions: Space of continuous functions, space of analytic functions, normal families, space of meromorphic functions, Riemann mapping theorem

Suggested text:

• J.B. Conway - Functions of One Complex Variable: Narosa

Other texts:

• T.W. Gamelin - Complex Analysis, Springer
• L. V. Ahlfors - Complex Analysis, TMH
• W. Rudin - Real and Complex Analysis TMH
- S. Ponnasamy - Complex Analysis TMH
- D.E. Sarason - Complex Function Theory HBA

M 215: Methodology of Mathematics
The material for this course will be based on the will and discretion of the instructor. The following topics are meant to be guidelines only. However, learning to write in Latex is mandatory for all.

Syllabus
Writing in mathematics, writing proofs, using Latex, logic concepts: contrapositive, converse and inverse.

Suggested texts
- L. Lamport LaTeX: A Document Preparation System, Addison-Wesley Professional
- B. Polster: Q.E.D.: Beauty in Mathematical Proof, Wooden Books
- R. J. Rossi, Theorems, Corollaries, Lemmas, and Methods of Proof, Wiley

Semester 3

Elective 2 (Interdisciplinary/Applied Math)
(see below the list of third semester electives)

M 211: Functional Analysis/M213 Discrete Mathematics
Note: Students will have a choice here. They can also take both of these courses simultaneously.

Syllabus (Functional Analysis)
Revision of measure theory
Normed Linear Spaces and Banach Spaces: Bounded linear operators, Duals, Hahn-Banach theorem; Uniform boundedness principle; Open mapping and Closed Graph theorems, some applications; Dual spaces: Computing duals of $L^p(1 \leq p < \infty)$ and $C[0,1]$: reflexive spaces; Weak and weak* topologies, Banach Alaoglu theorem. Hilbert Spaces - Orthogonal sets, Projection theorem, Riesz representation theorem, Adjoint operator; Self-adjoint, normal and unitary operators, Projections. Spectrum and spectral radius; Spectral theorem for compact operators. If time permits, Spectral theorem for self-adjoint, normal and unitary operators;

Suggested Text:
- G. F. Simmons - Topology and Modern Analysis (Ch. 9, 10, 11, 12), TMH
- J. B. Conway - A First Course in Functional Analysis, Springer
Other texts:

- W. Rudin – Real and Complex analysis TMH

Syllabus (Discrete Mathematics)
Basic concepts of set theory, cardinal numbers, mathematical induction, pigeonhole principle, permutations and combinations, inclusion-exclusion principle, recurrence relations, generating functions, Polya’s theorem, graphs, trees, matching: Hall’s marriage theorem, Ramsey theory, planar graph, Partially ordered set: Dilworth’s theorem and extremal set theory

Suggested texts:

- M. Aigner, Discrete Mathematics, AMS
- van Lint and Wilson, A course in Combinatorics, Cambridge Univ. Press
- Martin J. Erickson, Introduction to Combinatorics, Wiley

M 202: Topology 1

Syllabus
Topological Spaces and Continuous Functions: Basis, Order and Product Topology, Closed Sets and Limit Points; Metric Topology, Completion of Metric Spaces, Baire Category Theorem; Product Topology; Connectedness and Compactness: Connectedness and local connectedness, compactness and local compactness; Separation and countability axioms, T1, T2, T3, T4, Urysohn Lemma, Tietze extension theorem; Tychonoff theorem. Quotient topology and identification spaces; Topological manifolds as examples of quotient topology - torus, Klein’s bottle, projective spaces; Examples of topological groups; Homotopy of paths, Fundamental Group; Covering spaces and group actions on spaces, computation of fundamental group of the circle. Fundamental groups of surfaces.

Suggested Texts:

- J.R. Munkres - Topology Ch. 2 (sec 12-20), 3 (sec 2-29), 4(sec. 30-35), 5(sec. 37)
- sec 22 of Ch 2 for quotient topology, section on topological groups, Ch. 9, sec 51-55, 58-60 for Fundamental Group); PHI
- G.F. Simmons - Topology and Modern Analysis (ch. 2 sec. 9-13 for metric spaces); TMH
- M. A. Armstrong - Basic Topology; Springer

Other texts:

- P. J. Higgins – An Introduction to Topological Groups – LMS lecture notes CUP
- J.W. Milnor - Topology from a differentiable viewpoint (for notion of manifolds and classification of 1 and 2-manifolds) PUP
- S.M. Srivastava - A Course on Borel Sets, Springer

M 214: Multivariable Calculus and Differential Geometry

Syllabus

Revision of basic Linear Algebra

Functions of several variables: Differentiation, Chain rule, Extreme Values, Lagrange Multipliers, Contraction Principle, Inverse Function Theorem, Implicit Function Theorem; Rank Theorem; Integration, Fubini’s theorem, Jacobians, Differentiation of Integrals); Differential forms, General Fundamental Theorem of Integral calculus, curves, parametrization of curves, Curvature and the Frenet Formula; surfaces,

If time permits
First fundamental form, Second fundamental form, Gauss- Bonnet Theorem

Suggested Texts

- J. Shurman, Multivariable Calculus, Reed College
- T. Tao, Analysis II, Hindustan Book Agency
- M. Spivak, Calculus on Manifolds

Semester 4

M212: Topology 2

Syllabus

Singular homology and Eilenberg-Steenrod Axioms: Relative Homology, excision and exactness. Mayer-Vietoris sequence, homotopy invariance: Cellular homology as an example of a homology theory: Computation of homology for cell-complexes like S^n, CP^n, closed 2-manifolds. Singular cohomology, cup and cap products, Cohomology ring; Poincare duality for closed manifolds.

Suggested texts:

- A. Hatcher - Algebraic Topology (Ch. 2,3)
- J.R. Munkres - Elements of Algebraic Topology, Addison Wesley
Elective 3
See the list of 2nd/4th semester electives.

M 207: Linear Algebra 2

Syllabus:
Concept of a module. Modules over Commutative Rings and submodules. Examples: Vector Spaces; Abelian Groups, Commutative Rings; Ideals and Quotients, Invariant subspaces of a K-linear transformation of a vector space V as a K[X] submodule of V; Module Homomorphisms, Kernel and Image, Hom(M,N), Generation of modules, Direct sum and Free Modules. Exact sequences. Noetherian modules, Annihilator and torsion submodules; Characterization of rings in terms of modules; Finitely generated modules over PID, submodule of a free module is free;

Structure theorems – Invariant factor form and elementary divisor form;
Primary decomposition theorems, (proof of uniqueness may be omitted) Application to abelian groups.

Introduction to Canonical Forms: Statements and Applications; Outline of Proofs to be given. Details of Proofs may be excluded from the examination syllabus. Minimal and characteristic polynomials; triangularisation over algebraically closed field; Cayley-Hamilton Theorem, Nilpotent transformations. Rational and Jordan canonical forms.

Suggested Texts:
• D.S. Dummit and R.M. Foote - Abstract Algebra J. Wiley
• N.S. Gopalakrishnan - University Algebra Oxonian Press
• K. Hoffman and R. Kunze – Linear Algebra, PHI (Ch 3.7- 3.10, Ch 8-10)
• M. Artin - Algebra, PHI
• E. Vinberg - A course in algebra, GSM.

Other texts:
• I. N. Herstein – Topics in Algebra, John Wiley, Ch. 6.4-6.7.
• N. Jacobson - Basic Algebra 1, HBA, Ch. 3

Project M400
Note This course is intended to be a one-semester project work to undertaken with a faculty member. The student can read a topic of interest with the approval/guidance of his mentor/supervisor (who will normally be a faculty member of the department). While this course is meant to promote independent study on the part of the student, the student will be required to give a 25 - 35
minutes board/projector presentation at the end of the semester open to all the members of the mathematics department. There will be a five 5 -7 minutes question/answer period followed by the presentation. The students will be also required to submit typed notes of their presentation. The notes should be typed in Latex.

A major part (70%) of the assessment and evaluation for this course should be based on the the typed notes as well as presentation talk given by the student. The mentor of the student can assign the grade for this course.
Syllabi for 3rd semester Interdisciplinary/Applied Mathematics electives

M214: Cryptography

Syllabus

Public-key cryptography: RSA, ElGamal; Protocols: Diffie-Hellman, Fiat-Shamir;
Elliptic curve cryptosystem

Suggested texts

- Neal Koblitz, A course in Number Theory and Cryptography, Springer
- Delfs and Knebl: Introduction to Cryptography, Springer

CS221 - Design and Analysis of Algorithms

Syllabus

1. Different order notations like O, Θ, Ω, θ, ω and compare two different functions using order notation.
2. Methods to calculate and state running time of algorithms using order notations.
3. Divide and Conquer paradigm of algorithm design through its application in devising algorithms for merge sort, counting inversions, finding closest pair of points in a plane, fast integer multiplication, fast Fourier transform etc.
4. Dynamic Programming and use of memoization through several examples like longest increasing subsequence, edit distance, knapsack, matrix chain multiplication, independent sets in trees etc.
5. Greedy methods of algorithm design through various examples like minimum spanning trees, huffman codes, horn clauses etc.
6. Breadth First Search (BFS) and Depth First Search (DFS) in graphs.
7. Application of BFS and DFS like topological sorting of a directed acyclic graph, finding all strongly connected components of a directed Graph, finding articulation points,bridges and biconnected component of a graph, finding Eulerian tour in a Eulerian graph.
8. Kruskal and Prim’s algorithm for minimum spanning trees and union find data structure.

10. Algorithms for all pair shortest paths like the matrix multiplication based procedure, Floyd-Warshall algorithm, Johnson’s algorithm for sparse graphs.

11. Complexity class NP, NP-Completeness, NP-Hardness, reducibility.

Suggested texts

- Jon Kleinberg, Eva Tardos; Algorithm Design, Pearson education, 2008

CS 244: Introduction to Optimization Techniques

Syllabus

Mathematical Preliminaries:
Theory of Sets and Functions, Vector spaces, Matrices and Determinants, Convex sets and convex cones, Convex and concave functions, Generalized concavity

Linear Programming:
The (Conventional) Linear Programming Model The Simplex Method: Tableau
And Computation Special Simplex Method And Implementations Duality And Sensitivity Analysis

Integer Programming Formulating Integer Programming Problems Solving Integer Programs (Branch-and-Bound Enumeration, Implicit Enumeration, Cutting Plane Methods)

Nonlinear Programming: Theory Constrained Optimization Problem (equality and inequality constraints) Necessary and Sufficient conditions Constraint Qualification Lagrangian Duality and Saddle Point Optimality Criteria

Special Topics (if time permits) Semi-definite and Semi-infinite Programs Quadratic Programming Linear Fractional programming Separable Programming suggested texts

AM200: Nonlinear Dynamics and Asymptotic Analysis

Syllabus
Linearization - 1D systems Bifurcations - Saddle node bifurcation, Transcritical bifurcation, Pitchfork bifurcation
2D systems - Bifurcation of fixed points - Saddle node Transcritical Pitchfork

Bifurcation of periodic orbits - Coalescence of orbits Saddle node in invariant circle Homoclinic bifurcation

Chaos- Strange Attractor, 1D Map, Period Doubling

Asymptotic analysis and Perturbation Theory Regular perturbation, Singular perturbation, Method of dominant balance, Big O, small o, Differential Equations, Boundary layer theory, WKB approximation

Suggested texts

- Nonlinear Dynamics and Chaos, Steven H. Strogatz, CRC Press.
• Advanced Mathematical methods for scientists and engineers, C. Bender and S. Orszag, Springer.

AM 201 Numerical Algorithms

Syllabus
Numerics and Error analysis Floating Point representation Machine Epsilon Absolute error and Relative error, Backward error Forward error

Solutions of Nonlinear equation Fixed point iteration Bisection method Newton Raphson method Secant method

Numerical Optimization Method of Golden section search Newton’s optimization method

Solutions for linear algebraic equations Forward Gauss elimination Back Substitution LU Decomposition

Interpolation Lagrange interpolation Newton interpolation

Numerical Integration Finite Difference Trapezoidal rule Simpsons rule Gaussian quadrature Numerical solutions to Ordinary Differential Equations

CS312: Approximation and Online Algorithms

Syllabus

Online Algorithms: Competitive Analysis, The Paging Problem, Amortized Analysis, List Update Problem, Scheduling Jobs on Identical Parallel Machines, Graph Coloring, Machine Learning, K-Server Problem, Target Searching in an Unbounded Region and Target Searching in Streets

References:

• S. Albers, Competitive Online Algorithms, Lecture notes, Max Plank Institute, Saarbrucken, 1996.
• S. K. Ghosh and R. Klein, Online algorithms for searching and exploration in the plane, Computer Science Review, vol. 4, pp. 189-201, 201

CS312: Computing for Data Science

Syllabus
Definition of computing, Binary representation of numbers integers, floating point, text.

Unconventional / application specific file formats, like media. Bitmap representation for monochromatic image and generalizing the representation for RGB. File metadata, Speed of CPU, Memory, Secondary storage, DMA. Using and understanding the

Basics of Linux. Hardisk organization into Cylinder, Track, and Sectors for storing data.

Learning programming using Python. arrays([], []), conditional structures (if), and iterative structures (while, for), defining functions, using library functions. Programming assignment:

Dictionary data structure in python, File access in python, Sorting and Searching algorithms, appreciating complexity of algorithms. Programming using numerical methods. Basics of Turing machine as a model of computing, analysing the performance of a program, time complexity, space complexity, difference between efficiency and performance, Analyse the first sorting algorithm. Basic notations of complexity like Big Oh, omega etc, and their mathematical definitions, given a programme to compute the complexity measures.

Programming in SQL (Structured query language) to query relational databases. Representation of graphs, basic algorithms like minimum spanning tree, matching etc. Monte-Carlo simulation Object oriented programming using Java

Suggested texts
• Algorithms in Data Science, First edition Brian Steele, John Chandler, & Swarna Reddy
• How to program in Python Louden & Louden
• How to program in Java Louden & Louden
Syllabi for 2nd/4th semester Electives

Elective M 300: Coding Theory:

Syllabus:

Golay Code, Cyclic Codes, Codes over \mathbb{Z}_4, Goppa Codes, Algebraic Geometry Codes.

Books:

- van Lint, Introduction to Coding Theory, Springer
- Huffman and Vera Pless, Fundamentals of error-correcting codes, Cambridge
- Ling, and Xing, Coding Theory: A first course, Cambridge

Elective M 301: Advanced Complex Analysis

Syllabus:
Revision of Compactness and convergence in the space of analytic functions and Riemann mapping theorem; Weierstrass Factorisation theorem, Riemann zeta function, Runge’s theorem, Mittag Leffler’s theorem, Analytic continuation and Riemann surfaces, Schwarz reflection principle, Monodromy theorem, Harmonic functions, subharmonic and superharmonic functions, Dirichlet problem, Green’s functions, Jensen’s formula. If time permits, Hadamard factorisation theorem, Bloch’s theorem, Picard’s theorem

Suggested texts:

- J. B. Conway - Functions of one Complex Variable (Ch. 7-12) Narosa
- L.V. Ahlfors - Complex Analysis TMH
- H.M. Farkas and I. Kra - Riemann surfaces, Springer
- E. Stein and R. Shakarchi – Complex Analysis, PUP

Elective M 302: Harmonic Analysis

Syllabus:

Topological groups, quotients and products, open subgroups, Haar Measure on Locally Compact Groups; Properties of Haar measure, Invariant measures on homogeneous spaces. Representation of compact Lie groups, Schur’s Lemma, Weyl character formula, Pete- Weyl theory, Representations of SU(2,C). If time permits, Induced representation and Frobenius reciprocity theorem, Principal series representations of $\text{SL}(2,\mathbb{R})$

Suggested texts:
Elective M 303: Probability Theory

Syllabus:
Independence, Kolmogorov zero-one law, Kolmogorov three-series theorem, Strong law of large numbers, Levy-Cramer continuity, Central limit theorem, Infinite products of probability measures, Discrete-time discrete state Markov chains.

Suggested texts:
- P. Billingsley - Probability and measure
- J. Neveu - Mathematical foundations of the calculus of probability

Elective M 304: Distribution Theory

Syllabus: C^∞ functions on \mathbb{R}^n, smooth partition of unity on \mathbb{R}^n; Test function space on an open subset Ω of \mathbb{R}^n; Space of distributions on Ω, functions and measures as distributions; Examples of distributions on Ω that do not extend to distributions on \mathbb{R}^n; Elementary operations on the space of distributions: Derivatives of distributions, multiplication by a function, convolution by a test function; Sequences of distributions: convergence and approximation by test functions.

Schwartz space, Isomorphism of Schwartz space with itself under Fourier transform; Fourier inversion and Fourier-Plancherel Theorem; Tempered distributions, Fourier transforms of tempered distributions; Distributions of compact support; Convolution of a tempered distribution with a function of Schwartz class; Fourier transform of derivatives and convolutions (with a Schwartz class function) of tempered distributions;

Application of distributions to solving PDE’s: Weak solutions, some easy examples, statement of elliptic regularity; solution of Laplace equation on the half-plane and the Heat equation in \mathbb{R}^3, using Fourier transforms.

Suggested Texts:
- W. Rudin – Functional Analysis, TMH, Ch. 6, 7.1 – 7.19
- R. Strichartz – A guide to distribution theory and Fourier transforms, CRC Press, 1994, Ch. 5
- G.B. Folland – Fourier Analysis and its applications, Wadsworth and Brooks

Elective M 305: Operator Algebras

Syllabus
Multiplicative functionals and maximal ideal space, Gelfand transform, Gelfand Naimark theorem, Rational functional Calculus
C* Algebras, Positive Cones of C* Algebras States and GNS Construction
(If time permits, some of the following topics in C* algebras may be touched upon Approximate Identitites, Extreme points on the unit ball, Pure States and regular maximal ideals Ideals, Quotients and Representations)
Banach space of operators on a Hilbert space B(H) Locally convex Topologies on B(H) Polar decomposition and orthogonal decomposition von Neumann Double Commutant Theorem If time permits, Kaplansky’s density theorem

Suggested Texts:
• R. V. Kadison and J. R. Ringrose – Fundamentals of the Theory of Operator Algebras, AMS.

Other texts:
• Introduction to Operator Algebras – Li Bing Ren, World Scientific
• W. Arveson – An Invitation to C* Algebras (Ch 1), Springer
• V. S. Sunder - An Invitation to von Neumann Algebras (Ch 1), Cambridge

M307: Analytic Number Theory

Syllabus:

1. Arithmetic functions and Dirichlet series: the ring of arithmetic functions, Dirichlet series, important arithmetic functions, average estimates.
2. Characters: group characters, Dirichlet characters, detection of residue classes, Gauss sums.
3. Prime number distribution: infinitude of primes, Chebyshev’s bounds, Riemann zeta function, Perron’s formula, prime number theorem, Dirichlet L-functions, primes in arithmetic progressions.
5. Sieve methods: Selberg’s sieve, large sieve, estimates for twin primes, estimates for twins of almost-primes.
Main Text Book:

Supplementary Books:

M306: Algebraic Number Theory
Unique factorization, Primitive roots and Group structure of $U(Z/nZ)$, Quadratic reciprocity, Quadratic Gauss sums, Finite Fields, Gauss and Jacobi sums, Cubic and biquadratic reciprocity, equations over finite fields, Unique factorization in Algebraic number fields, ramification and degree, unit theorem, quadratic and cyclotomic fields. suggested texts
- Ireland and Rosen, A classical introduction to modern number theory, Springer
- TIFR Pamphlet, Algebraic Number Theory
- P. Samuel, Algebraic Theory of Numbers
- Lang, Algebraic Number Theory

M 308: Differential Geometry
Syllabus:
Manifolds: Smooth functions, vector fields, Jacobian, integral curves, submanifolds; Connections and curvature for surfaces in R^3, Gauss map.
The classical theory of surfaces in \mathbb{R}^3 to be stressed and done in detail as
the first set of examples where the notions of connection and curvature come
up. The general theory below to be described in the context of Riemannian
manifolds only.

Riemannian manifolds and submanifolds: Length and distance, Riemannian
connection and curvature, curves, submanifolds, hypersurfaces.

Operators on forms and integration: Exterior derivative, contraction, Lie
derivative, general covariant derivative, integration of forms and Stokes’ theo-
rem; Surfaces in \mathbb{R}^3, Gauss-Bonnet formula and Index theorem.

Suggested texts:

- N.J. Hicks - Notes on Differential Geometry; Ch. 1, 2, 3, 7, 8.1, 8.2, AP
 (Ch 5,6 of the above reference deal with the theory of connections and
curvature in great detail and can be used as a reference for these topics,
rather than a text. For this topic it is advisable to use Ch 2 and 4 of the
text below as the basic text.)

- M. P. do Carmo - Riemannian Geometry (Ch. 1,2,3,4) Birkhauser

Other texts:

- S. Kumaresan, A Course on Differential Geometry and Lie Groups, HBA
- N.J. Hicks - Notes on Differential Geometry; Ch. 5, 6 AP
- B. O’Neill - Elementary Differential Geometry; Springer
- Klingenberg - Elementary Differential Geometry; AP
- M. P. do Carmo - Differential geometry of curves and surfaces Birkhauser
- M. Spivak - Calculus on Manifolds Publish or Perish
- Singer and Thorpe – Notes on Elementary Topology and Differential Ge-
 ometry Springer

Elective M 311: Algebra 3

Syllabus:
Recapitulation of rings and modules : Noetherian and artinian rings and mod-
Tensor product - definition, basic properties, right exactness, change of rings.
Semi-simple rings and modules. Wedderburn’s theorems about structure of
semi-simple and simple rings. Linear representations, Semisimplicity, Charac-
ters, Algebras, Matrix algebras, Quaternion algebras, Group algebras, Introduc-
tion to Central Simple algebra and the Brauer group, Finite Dimensional
Algebras, Tensor product, Symmetric and Grassmann algebra, Fundamentals
of Lie groups and Lie algebras, Categories and Functor. (if time permits) Ba-
sics of Homological Algebra.

Suggested text:
• Jacobson N., Basic Algebra I and II, Dover Books.

• Vinberg E., A course in Algebra, American Math. Soc.

• Rowen L., Graduate Algebra: Noncommutative View, Graduate Studies in Mathematics.

Elective M 312 : Commutative Algebra

Syllabus:
Zero divisors, Nilpotent elements, Nilradical and Jacobson radicals, Opertions on ideals, Extension and contraction, tensor product of modules, exactness properties of tensor products, Rings and modules of fractions, Primary Decomposition, Integral dependence and valuations, chain conditions, Noetherian and Artinian rings, Discrete valuations and Dedekind domains, Completions, Dimension theory.

Suggested texts:
• M. F. Atiyah & I. G. Macdonald-Introduction to Commutative Rings, Addison Wesley
• D. Eisenbud-Commutative Algebra with a view towards Algebraic Geometry, Springer
• Miles Reid - Undergraduate Commutative Algebra, LMS 29, CUP
• D. S. Dummitt and R. M. Foote – Abstract Algebra, Wiley, Ch. 15
• N. S. Gopalakrishnan – Commutative Algebra, Oxonian Press

Elective M 313: Algebraic Geometry

Syllabus:
Affine algebraic sets: Affine spaces and algebraic sets, Noetherian rings, Hilbert basis theorem, affine algebraic sets as finite intersection of hypersurfaces; Ideal of a set of points, co-ordinate ring, morphism between algebraic sets, isomorphism. Integral extensions, Noether’s normalization lemma, Hilbert’s Nullstellensatz and applications: correspondence between radical ideals and algebraic sets, prime ideals and irreducible algebraic sets, maximal ideals and points, contrapositive equivalence between affine algebras with algebra homomorphisms and algebraic sets with morphisms, between affine domains and irreducible algebraic sets, decomposition of an algebraic set into irreducible components. Zariski topology on affine spaces, algebraic subsets of the plane. Projective spaces: homogeneous co-ordinates, hyperplane at infinity, projective algebraic sets, homogeneous ideals and projective Nullstellensatz; Zariski topology on projective spaces. Twisted cubic in $P_3(k)$.

Local properties of plane curves: multiple points and tangent lines, multiplicity and local rings, intersection numbers; projective plane curves: Linear
systems of curves, intersections of projective curves: Bezout’s theorem and applications; group structure on a cubic Introduction to sheaves of affine varieties; examples of presheaves and sheaves, stalks, sheafification of a pre-sheaf, sections, structure sheaf, generic stalk and function fields, rational functions and local rings, Affine tangent spaces; Projective varieties and morphisms; Hausdorff axiom. Prime spectrum of a ring: Zariski topology, structure sheaf, affine schemes, morphism of affine schemes. Elementary Dimension Theory, Fibres of a morphism, complete varieties, nonsingularity and regular local rings, Jacobian criterion, non-singular curves and DVR’s.

Suggested texts:

- W. Fulton - Algebraic curves, An introduction to algebraic geometry,
- C. G. Gibson – Elementary Geometry of Algebraic Curves, CUP,
- D. S. Dummitt and R. M. Foote – Abstract Algebra, Wiley, Ch. 15

Other texts:

- J. Harris - Algebraic Geometry, A first course, Springer
- M. Reid - Undergraduate algebraic geometry, LMS 12, CUP
- K. Kendig – Elementary Algebraic Geometry, Springer
- I. R. Shafarevich – Basic Algebraic Geometry, Springer

Elective M 322: Geometric Topology

Syllabus:

Topics from: Knots and Links: Knot group, Seifert surfaces, Linking numbers, Alexander invariant, surgery on links; Geometric structures – classification.

Hyperbolic Geometry: Models for hyperbolic space, Hyperbolic 2 manifolds; Geometric group theory: Cayley graph of a group, MilnorSvarc theorem, Quasi-isometries;

Hyperbolic groups in the sense of Gromov.

Suggested texts:

- J. Hempel - 3 manifolds, PUP
- D. Rolfsen - Knots and Links, AMS
- W. Jaco - Lectures on 3 manifold topology, AMS
- R. Benedetti and C. Petronio - Lectures on Hyperbolic Geometry, Springer
- W.P. Thurston - Geometry and Topology of 3 manifolds, Princeton Notes
- S. M. Gersten (ed.) - Essays in Group Theory, Springer
Elective M 323: Lie groups and Lie Algebras

Syllabus:
Linear Lie groups, exponential map, Lie algebra of a Lie group, Lie subgroups and subalgebras, Lie transformation groups, coset spaces and homogeneous spaces, adjoint group, Invariant differential forms; Lie algebras, nilpotent, solvable, semisimple Lie algebras, ideals, Killing form, Lie’s and Engel’s theorem, Universal enveloping algebra and Poincare-Birkhoff-Witt theorem; Structure of semisimple Lie algebras, Cartan subalgebras, root space decomposition.

Suggested texts:
- J.E. Humphreys - Introduction to Lie algebras and representation theory, Springer
- J.F. Adams - Lectures on Lie groups, Chicago
- W. Knapp - Representation theory of semisimple groups, An overview based on examples;
- W. Rossman - Lie groups: An Introduction through Linear groups. OUP

Elective M 324: Advanced Differential Geometry

Syllabus:
Jacobi Fields, conjugate points, Isometric immersions, Second fundamental form, Spaces of constant curvature, hyperbolic space, first and second variations of energy, Bonne-Myers and Synge-Weinstein Theorems, Rauch comparison theorem, Morse Index theorem, Manifolds of negative curvature, Preissman’s Theorem, Sphere theorem.

Suggested texts:
- M.P. do Carmo - Riemannian Geometry (Ch. 5-13), Birkhauser
- J.W. Milnor - Morse theory, PUP

Elective M 325: Complex Manifolds and Riemann Surfaces

Syllabus:

Suggested texts:
- Griffiths and Harris - Principles of Algebraic Geometry (Ch. 0, 1) – Wiley

24
Elective M 326: Complex Dynamics

Syllabus:
Revision of Universal coverings, Uniformization, Normal families, Montel’s theorem. Iterated Holomorphic maps: Fatou and Julia sets, dynamics on euclidean and hyperbolic surfaces, smooth Julia sets. Fixed point theory: Attracting, repelling, indifferent fixed points. Parabolic fixed points and the Fatou flower, Cremer points. Most periodic orbits repel, repelling cycles are dense in the Julia set.

Suggested texts:
- J. Milnor – Dynamics in One Complex Variable, PUP.
- A. Beardon - Iteration of Rational Maps - Springer
- X. Buff and J. Hubbard - Complex Dynamics

Elective M 327: Advanced Algebraic Topology

Syllabus
Homotopy groups, Whitehead theorem, CW approximation, Freudenthal suspension theorem. Ref: Algebraic Topology: Hatcher
Serre spectral sequence, Calculations, Serre’s theorem on homotopy groups of spheres. Ref: Spectral Sequences in Algebraic Topology: Hatcher
Vector bundles and characteristic classes. Ref: Characteristic classes: Milnor, Stasheff.
Generalised cohomology theory, K theory as an example, Bott periodicity, calculation of K theory, Atiyah Hirzebruch spectral sequence.

Ref:
- Vector bundles and K theory, Hatcher.

Elective M 331: Logic and Set theory

Syllabus:
Naïve Set Theory: Relations and functions; Axiom of choice and Zorn’s Lemma, Well- ordering principle, arithmetic of cardinal and ordinal numbers, transfinite induction.
Propositional calculus, Post’s tautology theorem; Predicate calculus, completeness theorems of predicate calculus; Godel numbers, recursive functions, Representability theorem Godel’s First Incompleteness Theorem.

Suggested texts:
- S. M. Srivastava – A Course on Borel Sets, Springer;
- H. Enderton – Introduction to Mathematical Logic, AP
- J. Schoenfield – Introduction to Logic, APK. Kuratowski, H. Mostowski-Set Theory, van Nostrand
Elective M 332: Programming and Data Structures

Syllabus: Introduction: algorithms and programmes (notion of variables, actions, input/output); operational issues (editing, compiling, running, and debugging programmes). C: variables, operators, expressions, statements, types (including some discussion on representation and size); control flow; arrays and pointers (notion of storage, memory locations, equivalence of pointers and arrays, pointer operations, multidimensional arrays, dynamic allocation/deallocation, strings); functions, macros, preprocessor directives, header files, multiple source files; structures and unions. Data Structures: definition, lists (array and linked list implementations), stacks, queues, binary trees, tree traversal; elementary notions of time and space complexity, O-notation; sorting (radix or bucket, bubble or insertion, merge or quick); binary search, binary search trees; hashing.

Suggested texts:
- B. Kernighan, D. Richie: The C Programming Language – PHI
- Other texts:
 - S. Gottfried - Programming in C, Schaum Series,
 - R.L. Kruse - Data Structures and Programme Design in C, PHI

Elective M 334: Automata theory, Languages and Computability

Syllabus:

Recursive, Primitive Recursive and partial recursive functions. Recursive and semirecursive (r.e.) sets, various equivalent models of Turing machines, Church-Turing thesis, Universal Turing machines and Halting Problem. Reducibility.

Complexity: Time complexity of deterministic and non-deterministic Turing machines, P and NP, Polynomial time reducibility, NP - completeness, Cook’s theorem (statement only)

Suggested Texts:
- J.E. Hopcroft and J.D.Ullman - Introduction to automata theory, languages and computation
- H.R.Lewis and C.H.Papadimitriou - Elements of the theory of computation
References:
- S.M. Srivastava- A Course in Mathematical Logic, Springer
- Martin Davis, R. Sigal and E. J. Weyuker - Computability, Complexity, and Languages:
 - Fundamentals of Theoretical Computer Science

Elective M 341: Classical Mechanics 1
Syllabus
Lagrangian Mechanics, variational calculus, Lagrange’s equations, Legendre transform, Liouville’s theorem, holonomic principle, Noether’s theorem, D’Alembert’s principle. Oscillations Rigid bodies
Suggested Texts:
- V.I. Arnold - Mathematical Methods of Classical Mechanics, Springer
- R. Abraham and J. Marsden - Foundations of Mechanics, Addison-Wesley

Elective M 342: Classical Mechanics 2
Syllabus
Hamiltonian Mechanics, symplectic manifolds, symplectic atlas, Hamilton-Jacobi method, generating functions, Integrable systems
Suggested Texts:
- V.I. Arnold - Mathematical Methods of Classical Mechanics, Springer
- R. Abraham and J. Marsden - Foundations of Mechanics, Addison-Wesley

Elective M 343: Quantum Mechanics
Syllabus
Probability theory on the lattice of projections in a Hilbert space Systems with a configuration under a group action Multipliers on locally compact groups The basic observables of
- a quantum mechanical system
Suggested Texts:
- S. J. Gustafson, I.M. Sigal - Mathematical Concepts of Quantum Mechanics, Springer

Project M400: At the discretion of faculty, a student might be allowed to carry out a one semester project on an advanced topic. The project should be carried out in the 4th semester in lieu of one elective. The project is meant to develop both oral and written presentation skills of the student and wherever possible, inculcate a taste for research in the student.
Research Methodology M450: This course is a compulsory requirement for all PhD students. They will be tested in terms of their ability to use software for literature survey (MathSciNet) and prepare latex documents.

Special Topics M 500: Under special circumstances a special topic course might be offered by a faculty member. In such a case, the course content must be approved by the Board of Studies.

- M 501: Topics in Topology
- M 502: Topics in Geometry
- M 503: Topics in Analysis
- M 504: Topics in Dynamics
- M 505: Topics in Algebra
- M 506: Topics in Analytic Number Theory
- M 507: Topics in Algebraic Number Theory
- M 508: Topics in Combinatorial Number Theory
- Seminar M 601: Topology seminar
- Seminar M 602: Analysis seminar
- Seminar M 603: Algebra seminar
- Seminar M604: Number Theory Seminar
- Seminar M605: Discrete Mathematics Seminar
- Research M 700