SAMPLE MASTERS ENTRANCE EXAM MATHS RKMVERI

Note: all questions are MCQ/Short Answer type. Answers should be boxed and placed next to the question in the answersheet. The number of questions may vary.

- (1) For a square nonsingular matrix A with real entries, pick the correct statement(s)
 - (a) The eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A
 - (b) 0 is not an eigenvalue of A
 - (c) if A is symmetric the eigenvalues of A are real numbers.
 - (d) if A is symmetric and α is an eigenvalue of A then $-\alpha$ is also an eigenvalue.
- (2) Let π be a permutation in S_6 which is an 6-cycle. What is the cycle structure of π^2 .
- (3) For a linear operator T on a finite dimensional \mathbb{R} vector space V, pick the correct statement(s)
 - (a) If T has an eigenvector x with eigenvalue λ and P is a polynomial with real coefficients then x is an eigenvector of P(T) with eigenvalue $P(\lambda)$.
 - (b) If $V = \mathbb{R}^n$ and T is rotation by $\frac{\pi}{2}$ radians then each non-zero vector is an eigenvector for T^2
 - (c) If T^2 has a non-negative eigenvalue λ^2 at least one of λ or $-\lambda$ is an eigenvalue of T.
 - (d) If x and y are two eigenvectors of T with distinct eigenvalues and ax + by is also an eigenvector of T then a = 0 or b = 0.
- (4) If $f(x,y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$ whenever $(x,y) \neq (0,0)$, how must f(0,0) be defined so as to make it continuous at the origin.
- (5) What is the maximal number of pieces into which a solid cube can be divided by 4 straight cuts?
- (6) Pick the correct statement(s)
 - (a) If an abelian group has elements of orders m and n respectively then it has an element whose order is the least common multiple (lcm) of m and n.
 - (b) If an abelian group has subgroups of orders m and n then it has a subgroup of order equalling the lcm of m and n.

Date: April 2019.

1

- (c) If G is a finite group whose order is not divisible by 3 such that $(ab)^3 =$ a^3b^3 for all $a, b \in G$. Then G cannot be abelian.
- (d) If all subgroups of a group G are normal then G is abelian.
- (7) Find the number of ring homomorphism from $\mathbb{Z}[X,Y]$ to $\mathbb{F}_2[X]/(X^3+X^2+X^2+X^2)$ X + 1).
- (8) The curve $f(x) = \frac{x^3}{1+x^2}$ has asymptotes
 - (a) y-axis
 - b) y=x
 - (c) x-axis
 - (d) None of these
- (8) Let G be a group in which, for some integer n > 1, $(ab)^n = a^n b^n$ for all $a, b \in G$ Pick the correct choices
 - (a) $G^{(n)} := \{x^n \mid x \in G\}$ is a normal subgroup of G.
 - (b) $G^{(n-1)} := \{x^n \mid x \in G\}$ is a normal subgroup of G. (c) $a^{n-1}b^n = b^na^{n-1}$ for all $a, b \in G$

 - (d) None of the above
- (9) The integral $\int_0^x \frac{\sin t}{t+1}$ is (a) nonnegative for all $x \ge 0$

 - (b) is negative for x an odd multiple of π
 - (c) is nonnegative only for $x \leq \pi$
 - (d) none of the above
- (10) Let the function f be defined for all real x as $f(x) = x^2$ if x is rational and f(x) = 0 if x is irrational. Calculate f'(0) provided that it exists.