A Study of Lie-Yamaguti Algebra and its Bundle

A thesis submitted to
Department of Mathematics

Ramakrishna Mission Vivekananda Educational and Research Institute

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mathematical Sciences

Submitted by

Saikat Goswami

(Registration Number: B2150017)

Under the supervision of

Dr. Shameek Paul

 $Assistant\ Professor,\ Department\ of\ Mathematics,\ RKMVERI$ and the co-supervision of

Prof. Goutam Mukherjee

Professor, Institute for Advancing Intelligence, TCG CREST

DEPARTMENT OF MATHEMATICS RAMAKRISHNA MISSION VIVEKANANDA EDUCATIONAL AND RESEARCH INSTITUTE BELUR MATH, HOWRAH 711202, INDIA.

Abstract

In the present thesis, we study Lie-Yamaguti algebras and Lie-Yamaguti algebra bundles. Lie-Yamaguti algebras are a class of non-associative algebras equipped with a bilinear operation and a trilinear operation satisfying some intriguing relations involving the operations. These algebras arose naturally in the study of reductive homogeneous spaces.

We develop algebraic deformation theory of Lie-Yamaguti algebras following the methodology of Gerstenhaber's deformation theory of associative algebras.

We use Lie-Yamaguti algebra cohomology to study the inducibility problem for automorphisms of abelian extensions of Lie-Yamaguti algebras, measuring obstruction to lift a given automorphism to its extension as a cohomology class. We derive Wells exact sequence in the context of extensions of Lie-Yamaguti algebras. As an application, we describe automorphism groups of certain semi-direct product Lie-Yamaguti algebras and analyze the inducibility problem for nilpotent Lie-Yamaguti algebras of index 2. We construct infinite families of such examples and provide an algorithm to determine all inducible pairs of automorphisms in these cases.

Next, we construct a universal commutative algebra associated with a finite-dimensional Lie-Yamaguti algebra, extending the idea of Manin-Tambara's universal constructions for associative algebras. Furthermore, we show that the resulting universal algebra admits a natural Hopf algebra structure. This leads to the definition of a universal coacting Hopf algebra for a given Lie-Yamaguti algebra. We also provide a representation-theoretic perspective of the construction. As applications, we describe the automorphism group and provide a classification of all abelian group gradings of a finite-dimensional Lie-Yamaguti algebra.

Finally, we introduce the notion of Lie-Yamaguti algebra bundle, define its cohomology groups with coefficients in a representation. Such bundles appeared implicitly in the work of M. Kikkawa, to address certain geometric properties of locally reductive spaces. This motivates us to introduce Lie-Yamaguti algebra bundles. We also study abelian extensions of Lie-Yamaguti algebra bundles and investigate their relationship with suitable cohomology group.