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1. introduction

My current area of research is in the area of commutative algebra and its manifestations in combinatorics and

algebraic geometry. Commutative algebra is the study of the commutative rings (e.g. polynomial rings over fields

and their quotients) and the modules over these rings. The geometry of the zero sets of system of polynomials

gives rise to the field of algebraic geometry while commutative algebra studies the underlying algebraic structures.

As expected these two fields are very intimately related and many geometric properties of the zero sets can be

measured by the algebraic properties of related commutative rings; for example the geometric notion of smoothness

is equivalent to the algebraic notion of regularity (for detailed discussion see the Chapter one in [13]). On the other

hand in many cases interesting combinatorial objects can be associated with the commutative rings whose algebraic

invariants encode various combinatorial properties. Specially in the case of the quotients of polynomial rings by

a squarefree monomial ideal two important combinatorial objects can be associated: a simplicial complex and a

hypergraph (see [22] and [12] respectively) and one interesting line of research is to build a dictionary between the

algebraic properties of the ring and the combinatorics of the hypergraph or the simplicial complex.

The topic of my doctoral dissertation is broadly in the area of homological algebra. Any module over a com-

mutative ring can be successively approximated by free modules giving rise to a free resolution and by injective

modules giving rise to an injective resolution of the module. Many invariants like Betti numbers, Bass Numbers,

Castelnuovo-Mumford regularity, projective dimension, injective dimension etc. can be associated with these resolu-

tions that measure “shape” and “size” if interpreted geometrically. I’m interested in building a dictionary between

the values of the invariants and the qualitative combinatorial properties of the underlying graphs (see [1], [2], [3], [5],

[8], [10], [11], [12], [14], [16], [20], [23], [24], [25]). One important theme of my research in this area is the study of

the Castelnuovo-Mumford regularity of the ideals associated to the finite simple graphs. I prove that under various

conditions on the graph the regularity of all higher powers of its edge ideal (the squarefree quadratic monomial ideal

generated by its edges) has the minimum possible regularity, i.e. their minimal free resolutions are linear. Recently

I’ve also proved that under various conditions on the graph many of its path ideals (the t-path ideal of a graph is

the squarefree monomial ideal generated by all its t-paths) have linear resolutions. Another theme of my doctoral

research is how to “classify” the quotient rings that are Cohen-Macaulay. One of my result in this area gives a new

characterization of the bipartite edge ideal case and my research is mostly driven towards generalizing it in the case

of the multipartite hypergraphs.

More recently I’ve focused on studying two other areas. First of them is the study of the bounds on the regularity

and the projective dimension of the ideals generated by homogeneous polynomials and their (in)dependence on the

number of variables (More precisely a question asked by Mike Stillman, see the last section for details). Second of

them is the study of the so called local cohomology modules. After their introduction by Grothendieck (see [9]),

the local cohomology modules have been the focus of research of many mathematicians. The vanishing of the local

cohomology seems to be connected to almost every part of commutative algebra and a broad range of topics from

algebraic geometry. One particular problem that interests me is how the structure of the spectrum of the underlying

ring is reflected in the vanishing of the local cohomology modules (see [15], [17]). I wish to explore this area with

the hope that other than being an interesting area of research on its own right this will also enrich my mathematical

knowledge.

The subsequent sections are devoted to my research projects and to my future research plans.
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2. Homological Algebra of ideals related to simple graphs

LetM be a standard graded module over a polynomial ring S. It is known thatM can be successively approximated

by free modules. Formally speaking there exists an exact sequence of minimal possible length called minimal free

resolution of M :

0 −→ Fp
.dp−→ Fp−1 · · ·

.d2−→ F1
.d1−→ F0

.d0−→M −→ 0

Where Fi =
⊕

S(−j)βij . Here S(−j) is the free module with one generator which has degree j. These βijs are

called the Betti numbers of M . Two very important invariants that are defined in terms of these numbers are

Castelnuovo-Mumford regularity or simply regularity and projective dimension, denoted by reg(M) and pd(M)

respectively:

reg(M) = max{j − i|βij 6= 0}
pd(M) = max{i|there is a j, βij 6= 0}

If all the dis are generated by linear polynomials then M is said to have a linear minimal free resolution. The

linear minimal free resolution is the case of minimum possible regularity.

There are various monomial ideals that are associated to graphs. Among these, the edge ideals and the path ideals

along with their powers and colons have been one of the big focus of my research.

For any graph G with set the of vertices x1, ..., xn let S be the polynomial ring on x1, ...., xn over any field. The

edge ideal I(G) and the t-path ideal It(G) is defined as follows:

I(G) = (xixj|xixj is an edge in G)

It(G) = (xi1 ....xit |xi1 ....xit is a t-path in G)

My research on homological algebra of the monomial ideals related to the graphs can be broadly divided into

two projects: 1. Finding the upper bounds of regularity and 2. classifying the classes of ideals whose quotients are

Cohen-Macaulay.

2.1. Regularity Of Powers Of Edge Ideals And Path Ideals. With the advent of the computer algebra sys-

tems the explicit computations of the minimal free resolutions of the modules over the polynomial rings became

easily accessible to mathematicians and questions regarding the explicit values of several homological invariants have

started to become popular. Castelnuovo-Mumford or simply regularity is one such invariant of the graded modules

over the polynomial rings. In simple terms it is a measure of the complexity in the sense that the ideals generated

in lower degrees are less complex than those generated in higher degrees.

Under this theme the study of regularity of the squarefree monomial ideals were made popular by various people.

The cases where these ideals have linear minimal free resolutions, i.e. the maps in their minimal free resolutions

are generated by linear polynomials, became of particular interest. Any squarefree quadratic monomial ideal is

naturally associated with a finite simple graph as its edge ideal and the following result by Fröberg (see [8]) indi-

cated the close connection between the combinatorial structure of the graph and the algebraic properties of the ideal:

Theorem 2.1. (Fröberg) Let G be a simple graph with edge ideal I(G). The minimal free resolution of I(G) is

linear if and only if the complement graph Gc is chordal that is every cycle of length greater than three has a chord.

As the minimal free resolutions of the powers of an ideal can be read off from the resolution of the Rees algebra

of the ideal, one expects that the combinatorial structure of the graph to have control over the resolutions of higher

powers of the edge ideal too. The following result by Herzog, Hibi and Zheng (see [14]) provides a strong evidence

in favor of that:

Theorem 2.2. (Herzog, Hibi, Zheng) If I(G) has linear minimal free resolution (or equivalently Gc is chordal) then

so does every power of I(G).

It is well known that the linear minimal free resolution is the case of minimum Castelnuovo-Mumford regularity.

In this case the linear minimal free resolution for I(G)k is the case where reg(I(G)k) = 2k. Very little is known about

the interplay between the combinatorics of the graph and the algebra of I(G) when the regularity is not minimal
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but one looks for results of the similar flavor in those cases also.

One particular case of interest is to study under what assumptions on the graph the higher powers of I(G) have

linear minimal free resolution as it is known that the converse of the previous theorem is not true, for example

the edge ideal of a five cycle does not have a linear minimal free resolution but all its powers do. It is also known

that if any power of I(G) has a linear minimal free resolution then Gc does not have any induced 4-cycle (see [25]).

In the light of these and Macaulay 2 calculations the following open question was raised by Nevo and Peeva (see [25]):

Question 2.3. (Nevo, Peeva) If G has no 4-cycle in its complement and reg(I(G)) ≤ 3 then is it true that all higher

powers of I(G) have linear minimal free resolution?

It is realized by several people that the short exact sequences coupled with close study of the colon ideals can be

very effective in finding bounds for the regularities of the monomial ideals. Motivated by the work of Dao, Huneke

and Schweig in [3], which is of the same spirit, the short exact sequences and the colon ideals related to the powers

of the edge ideals were closely studied by my self and the following property of the regularities of the powers of edge

ideals was proved (see [2]):

Theorem 2.4. (-) For any finite simple graph G and any s ≥ 1, let the set of minimal monomial generators of

I(G)s be {m1, ....,mk}, then ((I(G))s+1 : ml) is a quadratic monomial ideal and

reg(I(G)s+1) ≤ max{reg(I(G)s+1 : ml) + 2s, 1 ≤ l ≤ k, reg(I(G)s)}

Using this result I proved a series of results regarding the regularities of the powers of the edge ideal. My main

two results in [2] are summarized as the following theorem:

Theorem 2.5. (-) If G is s graph with no four cycle in complement such that reg(I(G)) = r then reg(I(G)s) ≤
2s+ r− 1. If further G is cricket free (see [2] for definition) then reg(I(G)) ≤ 3 and for all s ≥ 2, reg(I(G))s = 2s.

This theorem partially answers the aforesaid question and at present more work in this direction is being pursued

by me.

Recently I’ve explored the use of Theorem 3.4 in the case of powers of the bipartite edge ideals. Oscar Fernendez-

Ramos and Phillippe Gimenez have recently proved a characterization of the regularity 3 bipartite edge ideals. Using

this characterization and the Theorem 3.4, Ali Alilooee and I have shown the following (see [1]):

Theorem 2.6. (Alilooee,-) If I(G) is a bipartite edge ideal of regularity 3 then the regularity of I(G)s is exactly

2s+ 1 for all s.

I’ve also got interested in path ideals. I’ve been interested in the cases where the path ideal have a linear minimal

free resolution and whether its regularity has any relations with the corresponding edge ideal. In a recent work I

have addressed these questions and achieved various results. My main result is the following:

Theorem 2.7. (-) If G is a claw free (see [2] for definition) finite simple graph such that Gc does not have any

induced four cycle then every non zero path ideal have linear minimal free resolution.

Further exploration in these direction is ongoing. Along with the study related to the Question 2.3, right now

my research in this direction is focused on three questions. The first one was posed by Dao, Huneke and Schweig in [2]:

Question 2.8. Let G be a graph without any induced four cycle in its complement. Can reg(I(G)) be arbitrarily

large?

It seems to me that the solution to this problem is closely related to a ”description” (algebraic/combinatorial) of

the set of all variables x for which reg(I) = reg(I, x) for the gap free graphs. Till now no such description exists.

Either via such a description or by some other means if one can at least estimate the size of that set, it is expected

that some progresses towards this question will come.

The second question is motivated by the Theorem 3.4:
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Question 2.9. Under what combinatorial condition on G and for which s ≥ 2, reg((I(G))s : m) ≤ reg((I(G)) for

every minimal monomial generator m of I(G)s−1.

In the proof of the cricket free part of the Theorem 3.4 and the proof of the Theorem 3.5, a crucial point was to

show that reg(I(G)s : m) ≤ reg(I(G)) for every minimal monomial generator m of I(G)s−1 using the combinatorial

description of G. Further exploration of this type is expected to give similar theorems and also shed more light to

the Question 3.1.

The third one is related to the path ideals. Not much is known about the regularities of the powers of the path

ideals and their relations with the regularities of the path ideals themselves and the regularity of the edge ideal.

Macaulay 2 examples show that in many cases if the edge ideal has linear resolution then all the path ideals and all

of their powers have linear resolutions. However the number of examples computed is not high enough to conjecture

that this is always true. The question in its most general form is the following:

Question 2.10. Depending on the regularity of edge ideal and path ideals can one find an optimum upper bound for

regularity of a fixed power of a fixed path ideal?

One crucial tool that can be used for the powers of the edge ideals and not readily available for the powers of the

path ideals is the Theorem 3.4. One possible approach to attack this problem is to prove a similar theorem for the

path ideals (even for a restricted family!). Another approach can be to use the Theorem 3.4 itself judiciously. As

the combinatorics of the path ideals is intimately connected to the edge ideals, it might be possible to connect the

powers of the path ideals and the related colon ideals to the powers of the edge ideals.

Answers to these three questions are expected to lead towards further results regarding the regularities of the

powers of the edge ideals and in the course of finding them one is expected to discover some new techniques too.

2.2. Cohen-Macaulay Monomial Ideals. The Cohen-Macaulay rings and modules have many beautiful homo-

logical and geometric properties. It has always interested algebraists to find new classes of rings and modules that

are Cohen-Macaulay. In the case of squarefree monomial ideals, there is a hypergraph and a simplicial complex

associated with it in a natural way, and studies have been done to interlink the Cohen-Macaulayness of the quotient

ring and the combinatorics of the hypergraph and the simplicial complex.

The relation between the combinatorics of the simplcial complex and the Cohen Macaulayness of the monomial

ideal is connected via the Alexander Duality and has been explored extensively (see [22]) and well-understood. The

interplay between the combinatorics of the hypergraph (combinatorics of graph) and the Cohen -Macaulaness of the

monomial ideal (edge ideals) is comparatively less well-understood, although there have been some works in this

direction too . In the case of the edge ideals one is interested to characterizing the Cohen-Macauleyness in terms

of the combinatorics of the graph. The problem in its full generality is wide open however some special cases are

known. The following result by Herzog and Hibi is such a characterization in the case of bipartite graphs:

Theorem 2.11. (Herzog, Hibi) Let G be a bipartite graph with bipartition {x1, ...., xn} and {y1, ...., yn}. Then I(G)

is Cohen Macaulay if and only if there exists an enumeration of x′s and y′s with the following three properties:

a. xiyi ∈ I(G).

b. xiyj ∈ I(G) =⇒ i ≤ j

c. xiyj ∈ I(G), xjyk ∈ I(G) =⇒ xiyk ∈ I(G).

Recently I have proved the following new characterization of the Cohen Macaulay bipartite edge ideals:

Theorem 2.12. (-) Let G be a finite simple bipartite graph whose partitions are of size n and its edge ideal is

I(G). Then I(G) is Cohen-Macaulay if and only if there exists exactly n edges e of I(G) such that (I(G)2 : e) is

Cohen-Macaulay and all those edges are disjoint.

the case of higher degree monomial ideals not much is known about the relation between the combinatorics of

the hypergraph and the Cohen-Macaulayness of the ideal. Some partial results have been achieved. One case that
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seems to be interesting and also natural in the light the characterization of the bipartite edge ideals is the case of

the uniform multipartite hypergraph.

Question 2.13. Is there a generalization of either Theorem 3.11 or 3.12 for t-uniform, t-partite hypergraphs?

Some partial results (a sufficient condition for the 3-uniform, 3-partite hypergraph) has been achieved by me and

more research is ongoing.

Another question which seems to be of interest is the Cohen-Macauleyness of the path ideals and and its relation

with the edge ideals. In general neither of them implies the other which is explained in the following example:

Example 2.14. Let S = K[x, y, z]. If I = (xy, xz) then it is an edge ideal which is not Cohen-Macaulay but the

corresponding three path ideal J = (xyz) is definitely Cohen-Macaulay. On the other hand let S ′ = K[x, y, z, w]. If

I ′ = (xy, xw, zw) then it is an edge ideal which is Cohen-Macaulay but the corresponding 3-path ideal (xyw, xzw) is

not Cohen-Macaulay.

However it seems interesting to find classes of graphs where there is a relation between the two.

Question 2.15. For which classes of graphs, Cohen-Macaulayness of edge ideals imply Cohen-Macaulayness of path

ideals or vice versa?

Work in this direction is ongoing and success is expected to come along with further directions of research.

3. Local Cohomology and Lyubeznik Numbers

For any module M over a commutative ring R and an ideal I = (f1, ....., fk) of R we denote the i-th local

cohomology modules by H i
I(M) which is defined in the following way:

It is the i-th cohomology of the following complex:

0 · · ·M −→ ⊕Mfi −→ ⊕Mfifj · · · −→Mf1...fk −→ 0

Here the differentials are defined by localization.

After its introduction by Grothendieck, the local cohomology has been the focus of the research of many com-

mutative algebraists and algebraic geometers over decades. Its close connections with several areas of mathematics

including derived functors, theory of unique factorization domains, sheaf cohomology and its several beautiful prop-

erties like local duality makes it both a very useful tool and a very interesting topic of research on its own. Until now,

my research in the local cohomology has two foci: the study of the application of the local cohomology in general and

the local duality in particular in studying the homological invariants and the properties of the Lyubeznik Numbers.

3.1. Application of Local Duality. Eisenbud, Huneke and Ulrich in [6] studied the application of the local coho-

mology in the study of the regularity Tor modules and proved the following result about the regularity of Tor using

the local duality:

Theorem 3.1. (Eisenbud, Huneke, Ulrich) Let A and B be finitely generated standard graded modules over a

polynomial ring S in n variables over a field K with dim Tor1(A,B) ≤ 1 and let j, k be integers. Let p ≤ codim A

and q ≤ codim B and p+ q = n− j + k then,

reg(Hj
m(Tork(A,B))) ≤ reg(Torp(A,K)) + reg(Torq(B,K)− n

Using this result they proved several results on the regularity and on the syzygies. I’ve been interested in gener-

alizing the Theorem 4.1 in various directions and find applications. In particular the following generalization in the

multigraded case has been proved by me:

Theorem 3.2. (-) Let A and B be finitely generated multigraded modules over a polynomial ring S = K[x1....xn]

with dim Tor1(A,B) ≤ 1 and let j, k be integers. Let p ≤ codim A and q ≤ codim B and p + q = n − j + k.

If Hj
m(Tork(A,B))σ 6= 0 for some monomial σ then there exists monomials α and β with Torp(A,K)α 6= 0 and

Torq(B,Kβ 6= 0 where x1....xnσ is divisible by αβ.
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Further work in this direction specially to find a way to avoid or weaken the condition on the dimension (even for

a restricted class of modules) is ongoing. In particular in the monomial case it will be interesting to find a combina-

torial condition that replaces the condition on the dimension. These are summarized in the form of a question below:

Question 3.3. Can the dimension condition of Theorem 4.1 be replaced by a weaker condition even for a restricted

class of modules? In the case where the modules are quotients by monomial ideals can one replace the dimension

condition by a combinatorial condition?

One possible approach towards this, seems to study the spectral sequence used in the proof of Theorem 4.1 closely

(see [6]). Its collapse in E2 page seems to be extremely important for the proof. In that page most of the modules

vanish because of the condition on the dimension. Whether under a weaker condition one can achieve at least the

vanishing of the maps (instead of asking for the modules themselves to be zero) is not fully understood. One can

try to look for some combinatorial conditions that facilitate this. Another possible approach is to try to replace

that spectral sequence under some conditions by several short exact sequences. This will open up doors to several

possible generalizations.

3.2. Lyubeznik Numbers. The other direction related to the local cohomology that I’ve worked in is the prop-

erties of the Lyubeznik numbers. In 1993 Lyubeznik introduced a family of invariants for a local ring containing

a field, R, today called the Lyubeznik numbers and denoted by λi,j(R). These numbers have been shown to have

multiple connections; for instance, they relate to the singular and the ètale cohomology, to the Hochster-Huneke

graph (see [15]), and to the projective varieties. These connections have motivated multiple generalizations; for

instance, for mixed characteristic rings , and rings of equal-characteristics from a differential perspective.

In a recent joint work Núñez-Betancourt, Yanagawa and I have studied the behavior of these invariants. The

first result obtained in this context is that the Lyubeznik numbers are bounded globally over the rings of positive

characteristic.

Theorem 3.4. (-, Núñez-Betancourt, Yanagawa) Let R be an F -finite ring which is a quotient of a regular Noe-

therian ring of finite dimension and positive characteristic p > 0. Then, there exists a positive integer B such

that

λi,j(RQ) ≤ B

for every i, j ∈ N and Q ∈ Spec (R).

The previous claim was proved for algebras finitely generated over a field of characteristic zero or an algebraically

closed field of prime characteristic by Puthenpurakal. We pointed out that his result dealt only with the localization

at the maximal ideals.

Unfortunately, the Lyubeznik numbers do not behave much better than what it is stated in the previous theorem.

We show an example of a Stanley-Reisner ring whose highest Lyubeznik number could either decrease or increase

under localization.

An operation related with the localization of the Stanley-Reisner rings is the polarization. Given a monomial

ideal I, not necessarily radical, in a polynomial ring S, we consider the polarization ideal Ĩ in the polarization ring

S̃. We compare the Lyubeznik numbers at the maximal homogeneous ideal of S/
√
I and S̃/Ĩ.

Theorem 3.5. (-, Núñez-Betancourt, Yanagawa) Let S = K[x1, . . . , xn] be a polynomial ring, m = (x1, . . . , xn) and

I ⊂ S be a monomial ring. Let Ĩ denote the polarization of I, and S̃ = K[xr,s] denote the polarization ring. Let

η = (xi,j), and h = dim(S̃/Ĩ)− dim(S/I). Then,

λi−h,j−h (Sm/ISm) = λi,j

(
S̃η/ĨS̃η

)
.

for every i, j ∈ N.

This result gives surprisingly different behavior of Lyubeznik numbers under the localization and the polarization.

We also study the behavior of the the generalized Lyubeznik numbers, λ0i (R), for rings of equal characteristic under

the localization and the polarization for the Stanley-Reisner rings. As a consequence of our methods, we observe
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similar behavior for the finer invariants given by the multiplicities of the characteristics cycles.

One question regarding the Lyubeznik numbers that I wish to study in the near future is the following:

Question 3.6. Is there a relation between Lyubeznik numbers of edge ideals and Lyubeznik numbers of related path

ideals?

For the Betti numbers people have studied the relation between the Betti numbers of the edge ideals and their

powers. Those questions of course are irrelevant in case of the Lyubeznik numbers as they are invariant up to the

radical; but one can ask the similar question about the relations between the Lyubeznik numbers of the edge ideal

and the path ideals and study whether in some cases a nice theory can be developed.

Not much is known about this question. However it seems that better understanding of the relationship between

the associated primes of the edge ideals and that of the path ideals might shed some light.

4. Research Plans For Future

Along with the ongoing research on the aforesaid three themes (i.e. the questions mentioned in the previous

sections) right now I’m studying the research papers and the other available literature in two other topics on which

I wish to pursue research in the near future. First of them is a question asked by Mike Stillman on the dependence

of the projective dimension on the number of variables of the underlying polynomial ring that has been studied by

many researchers in recent years and the second one is the problem of the vanishing of the local cohomology.

4.1. Stillman’s question on Projective Dimension. The following question was asked by Mike Stillman:

Question 4.1. Let f1, ..., fk be k homogeneous polynomials of degrees d1, ..., dk in a polynomial ring in n variables

over any field K. Is there an upper bound for the projective dimension of I = (f1, ..., fk) depending only on d1, ..., dk
independent of n?

In [7] the case of the three cubics has been solved by Bahman Engheta. In [18] and [19], Huneke, Mantero,

Seceleanu and McCullough have studied the quadric case and recently Hochster and Annayan have announced that

they have a proof for all the cases up to degree four. The general case is very much open and even in the known cases

the bounds are far from being sharp. The methods used in each paper mentioned above are quite different from the

others. Possibility of pursuing research in various directions using various tools both personally and collaborating

with others makes this area look like an extremely interesting field for future research.

4.2. Vanishing of Local Cohomology. Lastly I’ve started studying the available works related to the vanishing

of the local cohomology modules. This is an area which has been studied by researchers extensively. To mention

a few [15],[17]. This area has been a melting pot of tools and techniques from every part of commutative algebra

making this a ripe field to explore. One direction in which I’m particularly interested in pursuing research is to

study how the structure of the spectrum of the underlying ring influences the local cohomology.

Apart from this specific research plan, I’m interested in studying various questions arising from local cohomology,

homological algebra, structure of spectrum of rings, topological properties of simplicial complexes arising from

algebra. My long term goal is to take up some of these studies.
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